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Abstract
A theory describing magneto-orientational properties of suspensions containing
antiferromagnetic nanoparticles is developed. Due to their small size, these particles possess,
apart from an anisotropic magnetic susceptibility pertinent to antiferromagnets, a spontaneous
magnetic moment caused by sublattice decompensation. In a colloid subjected to a DC field of
increasing strength an orientational crossover takes place: the particle magnetic moments,
initially aligned along the field, turn to the transverse orientation. This behavior considerably
changes the observable characteristics of the system: the spectrum of linear dynamic
susceptibility and the integral time of magnetic relaxation under a pulse field.

1. Introduction

Recently, multidisciplinary interest in the properties of
dispersions based on antiferromagnetic nanoparticles has
grown rapidly. The most well-known example is ferritin, both
as a natural colloid involved in some intracellular processes in
living beings [1, 2] and as an artificial size-calibrated nanograin
medium for applications [3]. A less well-known issue is that
of nanogranular ferrihydrite synthesized by certain pelobiont
bacteria [4]. In contrast with customary magnetic fluids, whose
physics is well developed, antiferromagnetic colloids display
some new and not fully understood features. In particular, this
concerns their magnetodynamical properties.

Specific behavior of single-domain antiferromagnetic
grains was predicted in the pioneering works of Néel [5].
The main concept is based on the fact that in a fine particle,
where the number of spins is quite limited, the magnetic
compensation of the sublattices is incomplete, yielding a
spontaneous (decompensation) magnetic moment μ. Néel
estimated its magnitude from simple statistical considerations;
for a quasi-spherical fine grain he obtained μ ∼ μBz N1/2,
where z is the number of spins per atom, μB the Bohr
magneton, N the number of magnetic atoms in the particle.
For a nanoparticle (∼10 nm) the number N ranges over 105–
106. This means that the magnetic moment of such an object
is about 0.1–1% of that of a ferromagnetic one. Taking 300 G
as a reference value, one finds that the effective spontaneous
magnetization of a nanosize antiferromagnetic (NAF) particle

is about or less than one gauss, which is a small but by no
means negligible value.

Denoting the sublattice net magnetic moments of a
nanoparticle byμ1 and μ2, with allowance for decompensation
we write their absolute values as

μ1 = IsV + 1
2μ, μ2 = IsV − 1

2μ, (1)

where Is is the reference bulk value of the sublattice
magnetization and V the particle volume. In the temperature
range below the Néel point we set the decompensation
magnetic moment μ constant and assume equation (1) to be
valid for applied fields lower than the exchange one. In this
limit the antiferromagnetic vector defined as e = (µ1 −
µ2)/2IsV may rotate but cannot change its length. In a NAF
particle it defines also the direction of the decompensation
magnetic moment µ = μe.

A specific feature of any antiferromagnet is a considerable
magnetic susceptibility χA in the direction across the
antiferromagnetic vector. This response mechanism is
due to the ‘elastic tilt’ of sublattices under an external
field. According to Néel [6], in fine particles the value
of χA is enhanced up two times against the corresponding
value pertinent to a bulk crystal due to a specific
superantiferromagnetic effect. In our model we describe the
field-induced magnetic moment of a NAF particle using the
linear susceptibility tensor

χik = χA(δik − ei ek), (2)
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where χA is an effective value. Tensor χik is defined for a unit
volume of the particle; its component in the direction of e is
zero. Expressing the sublattice magnetic moments with the aid
of equations (1) and (2), one gets

µ1,2 = ±(IsV ± 1
2μ)e − χAV (eH)e. (3)

In terms of equation (3), the Zeeman energy of a particle takes
the form

UH = −μ(eH)+ 1
2χAV (eH)2; (4)

the coefficient 1
2 in the last term is due, as usual, to integration

over the field strength.
The particle magnetic anisotropy is taken to be uniaxial

with K being the corresponding energy density and n a unit
vector of the easy axis. Then the anisotropy energy is written
as UA = −K V (en)2, which in combination with equation (4)
yields the expression for the energy of a NAF particle:

U = −μ(eH)+ 1
2χAV (eH)2 − K V (en)2. (5)

This formula closely resembles the one used for phenomeno-
logical description of a single-domain ferromagnetic particle.
In particular, the magnetic state of a NAF grain is determined
by the same pair of variables: the unit vector of the permanent
magnetic moment e and the easy-axis vector n. However, at
present equation (5) incorporates two, not one, Zeeman terms
which imply competing equilibrium orientations of the parti-
cles with respect to the applied field. Indeed, as seen from
equation (5), in a static field H < μ/χAV the particle aligns
its axis n parallel to H while at H > μ/χAV the axis is tilted
with respect to the field direction, the tilt angle growing gradu-
ally to 90◦. This means that in a NAF colloid at H∗ = μ/χAV
an orientational crossover takes place: the equilibrium axes
distribution, being of the easy-axis type at H < H∗, turns into
a ‘cone phase’ at H > H∗ and tends to the easy-plane one at
H � H∗.

Quantitative differences between NAF and ferromagnetic
cases are also important. Note that due to the decompensation
origin of the magnetic moment the ratio

ξ = μH/kT (6)

for NAF grains of a size ∼10 nm is two orders of magnitude
smaller than that for the same ferromagnetic particles.
Meanwhile the parameter

σ = K V/kT, (7)

that determines the probability of thermofluctuational magnetic
inversion (superparamagnetism) remains the same. To this set
one should add the parameter

� = 1
2χAV H 2/kT, (8)

non-existent for ferromagnetic particles.

2. Static properties

In what follows we develop a theory of magnetic properties of
NAF suspensions (colloids) as a modification of the approach
used for dilute magnetic fluids (MF), i.e., a model of a gas

of non-interacting magnetic dipoles. In this connection one
fact of fundamental significance should be remarked. Since
the magnetodipole interaction is proportional to the square of
the particle magnetic moment, in NAF colloids this factor is at
least four orders of magnitude lower than in MF. This means
that for NAF systems the ‘dilute’ description is well applicable
for any colloid concentration.

The observed magnetic moment of a particle is defined in
a standard way as a derivative of its free energy with respect to
the field: m = −∂F/∂H . In an assembly of non-interacting
particles at temperature T one has

mi = μ〈ei 〉0 + χAV (δik − 〈ei ek〉0)Hk, (9)

where angular brackets denote averaging with the equilibrium
distribution function W0 ∝ exp(−U/kT ). In general, m
depends on the above-introduced parameters (6)–(8) and on
the angle between the field and the particle axis. For both
liquid and solid NAF dispersions a convenient way to evaluate
m is provided by the matrix sweep method described in [7],
for example. At small ξ , i.e., in a field of weak to moderate
strength, the result could be found analytically. In particular,
for a solid dispersion with random axes distribution one gets

m = 1
3μξ [1 − 1

15ξ
2(1 + 2S2)− 4

15�(1 − S2)]
+ 2

3χAV H [1 − 2
15 (ξ

2/2 − �)(1 − S2)]. (10)

Here the order parameter S2 = 〈P2(en)〉0, with P2 being
the second Legendre polynomial, describes the orientation
of vector e with respect to the particle anisotropy axis.
Since variation of P2 is limited, function S2(σ ) varies from
zero (magnetoisotropic) to unity (magnetically hard particles).
Substituting S2 = 0 in equation (10) one recovers the classical
result [5] since in Néel’s studies magnetic anisotropy was
neglected.

Meanwhile, the anisotropy constant K in antiferromagnets
could be substantial, e.g. in ferritin it is several times
105 erg cm−3. As seen from equation (10), for strong
anisotropy (σ � 1, S2 ∼ 1) the moment m depends only
on the parameter ξ for an arbitrary value of the latter. Indeed,
at strong anisotropy one may pass to a simple two-level (Ising)
approximation that yields the magnetic moment in the form

m = χAV (1 − cos2ψ) + μ cos tanh(ξ cosψ), (11)

where ψ is the angle between the easy axis and the field
direction. For random orientation, integrating equation (11),
one gets [8]

m = 2
3χAV H + μG(ξ), G(ξ) =

∫ 1

0
y tanh(ξy) dy.

(12)
In NAF colloids the nanograins are free to rotate. We

ascribe them a strong (infinite) magnetic anisotropy and set
e = n, thus adopting a ‘rigid-dipole’ approximation. In this
case the energy function formally coincides with equation (4).
After averaging over the equilibrium state, for the colloid
magnetization one obtains

M = cm = cμ{〈P1(x)〉0 + 2
3 q[1 − 〈P2(x)〉0]}. (13)
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Figure 1. Reduced static magnetization of a NAF colloid.

where c is the particle number concentration, h = H/H a
unit vector of the external field, x = (eh) and q = H/H∗
the dimensionless field strength. At q 	 1 the averages of
P1 and P2 are close to the corresponding Langevin functions
of argument ξ = βq , where β = μH∗/kT is hereafter used
as a dimensionless temperature parameter. At q ∼ 1 (around
the crossover) these functions reach maxima and at q > 1,
due to the negative contribution of the term � = 1/2βq2,
decrease, tending to 0 and −1/2, respectively. Meanwhile,
the magnetization grows unboundedly due to the linear term
in equation (13). This behavior is shown in figure 1, where the
lines correspond to β = 5(1), 10 and 20(3).

3. Dynamics of magnetization

To build a description of magnetodynamics for NAF colloids
in the same ‘rigid-dipole’ limit, we start with the conventional
kinetic Fokker–Planck equation [7]:

2τ∂W/∂ t = JWJ(U/kT + ln W ); (14)

here τ is the time of rotary diffusion of a particle in a liquid
matrix and J = (e × ∂e) an infinitesimal rotation operator.
The orientation distribution function is expanded in a series of
spherical harmonics

W (e,h, t) =
∞∑

l=1

k=l∑
k=−l

blk(t)
2l + 1

4π

(l − |k|)!
(l + |k|)! Xk∗

l (eh),

(15)
where Xk

l = Pk
l (cosϑ)eikϕ are expressed in terms of

angular coordinates in a spherical framework with the polar
axis along h; Pk

l are associated Legendre polynomials. In
representation (15) the dynamics of the system is determined
by the coefficients blk(t) = 〈Xk

l 〉 which obey a chain-like set
derived from equation (15):

2τ
dblk

dt
+ l(l + 1)blk + βq2

[
(l + 1)(l + k − 1)(l + k)

(2l − 1)(2l + 1)
bl−2,k

+ l(l + 1)− 3k2

(2l − 1)(2l + 3)
blk − l(l − k + 2)(l − k + 1)

(2l + 1)(2l + 3)
bl+2,k

]

− βq

2l + 1
[(l + 1)(l + k) bl−1,k − l(l − k + 1)bl+1,k]

= 0. (16)

To find a response of a NAF colloid to a dynamic probing, we
add to the particle energy (4) a term U1 = −eH1(t), where a

weak AC (probing) field changes harmonically:

H1(t) = 1
2 H10

(
eiωt + e−iωt

)
h1, |h1| = 1. (17)

If this is the only field imposed, the linear susceptibility
calculation is easy and yields

χ(ω) = cμ2

3kT

1

1 + iωτ
+ 2cV

3
χA. (18)

If besides the probing one, a static magnetizing field H is
present, the macroscopic magnetic susceptibility is anisotropic.
From equations (15) and (16) it follows that the components of
the perturbed magnetization parallel and normal to the field are

δM‖ = cμ[b10(ω)− 2
3 b20(ω)]

+ 2
3 cχAV [1 − 〈P2(eh)〉0] H1,

δM⊥ = cμ[b11(ω)− 1
3 b21(ω)]

+ 1
3 cχAV [2 + 〈P2(eh)〉0] H1.

(19)

Here the moments blk of the non-equilibrium distribution
function are obtained by solving anew the set (16) where now
the rhs of the lines (l, 0) and (l, 1) are βq1 fl0 and βq1 fl1, with
functions f depending on l, q and the equilibrium averages
〈Pl(eh)〉0.

The paramagnetic susceptibility of NAF particles adds to
formulas (19) the frequency-independent contributions. At
H = 0 the system has no pre-orientation, 〈Pl(eh)〉0 = 0 and
the two lines of equation (19) coincide. Under strong fields,
where 〈Pl(eh)〉0 = 1, the perpendicular term is maximal
while the parallel one turns to zero. As the frequency range in
question lies far below that of electron spin resonance at given
H , the corresponding susceptibilities may be written as

χ(‖)∞ = δM‖(ω → ∞)/H1, χ(⊥)∞ = δM⊥(ω → ∞)/H1.

(20)

4. Dynamic susceptibility under magnetizing field

In the theory of linear susceptibility in dilute magnetic
fluids [9] the pertinent function χ(ω, H ) is given by the Debye
factor [1 − iωτα(H )]−1, where τα(H ) is a known function and
the subscript α is either ‖ or ⊥. In a NAF colloid the situation is
more complicated due to the orientation crossover occurring at
H = H∗. From equation (4) it follows that below the crossover
(q < 1) the equilibrium orientation state of the colloid is of the
easy-axis type, and both components of the susceptibility, χ‖
and χ⊥, closely resemble that of an ordinary MF. This means
that the magnetization relaxation is dominated by the most
long-living eigenmode of equation (16) which further on we
shall term the dipole mode.

Starting at the crossover point q = 1 and on further
increase of the magnetizing field, the basic state of the colloid,
according to equation (4), tends to an easy-plane structure
defined by unit vector h. There the decisive contribution to
the relaxation process is rendered by the second (quadrupole)
mode of equation (16). A full multimode analysis of this
equation proves that the joint contribution of all the higher
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Figure 2. Cole–Cole diagrams for transverse magnetic susceptibility
of a NAF colloid at β = 6 in the magnetizing field q = 0.5(1),
1.1 (2), 1.4 (3), 2.0 (4); here χ0 = χ(⊥)(ω = 0).

eigenmodes is always low. However, the ‘participations’ of
quadrupole modes in longitudinal and transverse relaxations
are qualitatively different. For the longitudinal case the effect
manifests itself only in the vicinity of the crossover point.
There the dipole mode virtually disappears, and the quadrupole
one rules the process. This type of mode mixing does not affect
much the corresponding dynamic susceptibility χ‖(ω, q), but
reflects itself strongly under pulse fields, as shown below in
section 5.

In the transverse magnetic relaxation the weight of the
quadrupole mode increases monotonically with q at the
expense of that of the dipole one. This effect is not very
significant for pulse probing but strongly affects the dynamic
susceptibility. To facilitate both theoretical illustration and
experimental verification of the phenomenon, we present it in
terms of Cole–Cole diagrams. For that, one subtracts from the
transverse complex susceptibility its frequency-independent
part and plots a normalized imaginary part |χ ′′(ω)| as a
function of the real one χ ′(ω). The result is shown in figure 2.
As seen, in a weak field (q < 1) the diagram is very close
to the Debye half-round (curve 1) characteristic of oscillation
of a single dipole mode. For the crossover conditions, where
the spectrum essentially incorporates both modes, the curve
becomes more complicated. We note that if the difference
between the reference times were large, the diagram would
have split into two separate half-rounds. In the system under
study, due to the proximity of the reference times (τ quad ≈
τ dip/3) this splitting does not resolve completely but yields a
considerable flattening of the diagram; see curves 2 and 3. On

further increase of the field strength, a simple Debye shape is
restored (line 4), which means a regime for a single quadruple
mode. In other words, far from the crossover the magnetization
relaxation is a single-mode process, while around q = 1 it is
essentially bimodal.

5. Integral relaxation times

Pulse fields provide another way to both probe magnetic
properties of colloids and control their magneto-orientational
behavior. A convenient way to characterize a multimode
response to a pulse excitation is via the integral relaxation
time (IRT). It is evaluated by dividing the time integral of the
response function taken over the interval [0,∞] by the initial
value of this function. For example, IRT for magnetization is
written as

τ ∗ = [δM(0)]−1
∫ ∞

0
δM(t) dt .

An important merit of IRT is that it incorporates contribu-
tions from all the modes and thus helps to reveal the multimode
nature of the longitudinal magnetization mentioned in sec-
tion 4. Evaluating the first two (main) ‘longitudinal’ (k = 0)
eigenvalues from the set (16), one obtains the relaxation times
for these modes. As functions of the field strength they both
decrease with q , being bounded by the limiting values

τ
dip
‖ = τ

{
1, at q = 0,

0, at q → ∞;

τ
quad
‖ = τ

{
1
3 , at q = 0,

0, at q → ∞.

In figure 3 the actual behavior of these partial relaxation times
is shown by dashed lines. We recall that in the longitudinal
magnetic response the weights of the dipole and quadrupole
modes change non-monotonically with q . The dipole mode
dominates on both sides of the crossover but turns to zero
at q ∼ 1. Due to that, in this region IRT deviates strongly
from the line τ dip

‖ (q) and virtually coincides with the function

τ
quad
‖ (q). At β > 1, function τ ∗

‖ (q) has a minimum located in
the crossover region; see figures 3(b) and (c).

IRT for the transverse (H1 ⊥ H) pulse magnetization of
a NAF colloid is also non-trivial due to a combination of two
facts. First, the mode weights change gradually from the dipole

Figure 3. Solid lines: longitudinal integral relaxation time for a NAF colloid at β = 1 (a), 5 (b) and 10 (c); dashed lines: relaxation times for
decoupled dipole and quadrupole modes.
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at q 	 1 to the quadrupole mode at q � 1. Second, the partial
times behave in a specific way:

τ
dip
⊥ = τ

{
1, at q = 0,

2, at q → ∞;

τ
quad
⊥ = τ

{
1
3 , at q = 0,

0, at q → ∞.

As a result, τ ∗
⊥(q) goes down monotonically but the slope of

this curve oscillates. Note that in the transverse case the dipole
time never turns to the ‘dynamic’ limit (∝ τ/ξ ) and always
remains temperature dependent. Accordingly, in the region
q � 1 it is completely ‘expelled’ from IRT.

6. Conclusions

A model is proposed that describes low frequency magnetody-
namic behavior of nanosuspensions (colloids) of fine antiferro-
magnetic grains; the latter are assumed to possess anisotropic
susceptibility and a permanent (decompensation) magnetic
moment. We show that the dynamic susceptibility and pulse
field response characteristics (the Cole–Cole plots, in partic-
ular) display certain features which strongly distinguish NAF
colloids from usual magnetic fluids.
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Néel L 1961 C. R. Acad. Sci. Paris 253 9–12
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